Trending...
- Digital Watchdog Launches New myDW Cloud Services
- Atlas Home Improvement Launches Annual Helmet for Heroes Giveaway on July 4, 2025
- Real Estate Experts Highlight Jersey Shore as a Smart Buy in 2025
The latest results will be presented at THE BATTERY SHOW in Detroit, USA, September 13-15, 2022 and Battery Safety Summit, October 12-14, 2022
KOBE, Japan, Sept. 14, 2022 /PRNewswire/ -- Integral Geometry Science Inc. (https://www.ig-instrum.co.jp/), a Japanese deep tech imaging startup, releases an innovative inspection system, which will enable battery manufacturers to detect products having ignition risks with higher-precision. The system is applied with a theory of inverse problem, developed by Professor Kenjiro Kimura of Kobe University Japan, for the first time in applied mathematics history.
Storage batteries are used in many fields for the purpose of storing energy generated. Storage batteries are applied to aging tests before shipment, and only good batteries are distributed in the market. However, accidents such as ignition have occurred though batteries pass these safety tests. One of the causes of these accidents is that the electric current density inside the storage battery is spatially non-uniform, and the degree of this non-uniformity gradually increases as the battery is recharged and discharged. A sophisticated good/failure discrimination system is essentially required to eliminate theses batteries with non-uniform electric current density distribution.
More on Michimich.com
Our visualization system can visualize and evaluate the spatial distribution of electric current density inside batteries by using measurement data of spatial distribution of the magnetic field outside the ones, which is originated from internal electric current flows.
The key technology and theory of this visualization system is an analytical solution of the inverse problem, that is to derive the electric current density distribution inside a storage battery from the measured data of the spatial distribution of the magnetic field. We have firstly derived its analytical solution. When nondestructive-testing based on this theory, although electric current is applied during measurement, level of the electric current is very low compared to the practical level of intrinsic battery power, and has no effect, so storage batteries that are determined to be good in terms of the spatial uniformity of electric current density distribution can be shipped as is.
Many manufacturers of vehicle-mounted storage batteries have used our visualization system, and we have contributed to the analysis of many failure locations and good/fail decisions (Figure 1). As a result of visualization, self-discharge points are brightly indicated.
More on Michimich.com
Visualization of abnormalities about spatial distribution of electric current density caused by cycle degradation (Figure 2) and Li-NMR analysis by dismantling inspection have confirmed electrode degradation and metal precipitation at failure points (Figure 3).
When this next-generation pre-shipping quality control system based on electric current distribution visualization technology is introduced as a safety test, risks in the battery business are reduced and storage batteries with more safety assurance must be distributed. We will participate in an exhibition in the U.S. (THE BATTERY SHOW, dates : September 13-15, location : Suburban Collection Showplace, Novai, MI, booth number : #1250 / Battery Safety Summit, online, October 12-14, 2022).
SOURCE Integral Geometry Science Inc.
KOBE, Japan, Sept. 14, 2022 /PRNewswire/ -- Integral Geometry Science Inc. (https://www.ig-instrum.co.jp/), a Japanese deep tech imaging startup, releases an innovative inspection system, which will enable battery manufacturers to detect products having ignition risks with higher-precision. The system is applied with a theory of inverse problem, developed by Professor Kenjiro Kimura of Kobe University Japan, for the first time in applied mathematics history.
Storage batteries are used in many fields for the purpose of storing energy generated. Storage batteries are applied to aging tests before shipment, and only good batteries are distributed in the market. However, accidents such as ignition have occurred though batteries pass these safety tests. One of the causes of these accidents is that the electric current density inside the storage battery is spatially non-uniform, and the degree of this non-uniformity gradually increases as the battery is recharged and discharged. A sophisticated good/failure discrimination system is essentially required to eliminate theses batteries with non-uniform electric current density distribution.
More on Michimich.com
- BIYA Forecasts 2025 Surge with ¥300M ($41.8 M USD) in Revenue and ¥25M Profit from Cloud Based HR Solutions: Baiya Intl. Group (N A S D A Q: BIYA)
- Paul E. Saperstein Co. Announces Geographic Expansion of Auction Services
- CMR Mechanical Shares 5 Signs Your AC May Be in Desperate Need for Repair
- Michigan SEO Group Shares 5 Proven Ways to Boost Social Media Engagement for Small Businesses
- Mussio Painting Shares The Benefits of Working with Professional Painters in Ann Arbor
Our visualization system can visualize and evaluate the spatial distribution of electric current density inside batteries by using measurement data of spatial distribution of the magnetic field outside the ones, which is originated from internal electric current flows.
The key technology and theory of this visualization system is an analytical solution of the inverse problem, that is to derive the electric current density distribution inside a storage battery from the measured data of the spatial distribution of the magnetic field. We have firstly derived its analytical solution. When nondestructive-testing based on this theory, although electric current is applied during measurement, level of the electric current is very low compared to the practical level of intrinsic battery power, and has no effect, so storage batteries that are determined to be good in terms of the spatial uniformity of electric current density distribution can be shipped as is.
Many manufacturers of vehicle-mounted storage batteries have used our visualization system, and we have contributed to the analysis of many failure locations and good/fail decisions (Figure 1). As a result of visualization, self-discharge points are brightly indicated.
More on Michimich.com
- Family Caregivers in Michigan Can Now Get Paid Through Medicaid with Family Aide Home Care
- Florida Broker Bent Danholm Featured in the Daily Mail's U.S. Real Estate Coverage
- Robin Launches Legal Intelligence Platform to solve intelligence gap in Fortune 500 legal teams
- Melissa B. Releases Digitally Independent: Empowering Music Artists with AI and Brand Strategy
- Consumer Accountability Alliance Issues Formal Notice Alleging Proximate Liability for Medical Harm
Visualization of abnormalities about spatial distribution of electric current density caused by cycle degradation (Figure 2) and Li-NMR analysis by dismantling inspection have confirmed electrode degradation and metal precipitation at failure points (Figure 3).
- Future
When this next-generation pre-shipping quality control system based on electric current distribution visualization technology is introduced as a safety test, risks in the battery business are reduced and storage batteries with more safety assurance must be distributed. We will participate in an exhibition in the U.S. (THE BATTERY SHOW, dates : September 13-15, location : Suburban Collection Showplace, Novai, MI, booth number : #1250 / Battery Safety Summit, online, October 12-14, 2022).
- References
- Shogo Suzuki, Hideaki Okada, Kai Yabumoto, Seiju Matsuda, Yuki Mima, Noriaki Kimura, and Kenjiro Kimura, "Non-destructive visualization of short circuits in lithium-ion batteries by amagnetic field imaging system", Japanese Journal of Applied Physics, 60 056502(2021).
- Seiju Matsuda, Shogo Suzuki, Kai Yabumoto, Hideaki Okada, Yuki Mima, Noriaki Kimura, Kenjiro Kimura, "Real-time imaging of the electric conductivity distribution inside a rechargeable battery cell, Electrochemistry", Vol. 89, No. 5, 2021.
SOURCE Integral Geometry Science Inc.
Filed Under: Business
0 Comments
Latest on Michimich.com
- Cynthia Pinot Among Artists Selected for Renowned London Art Biennale 2025
- Real Estate Experts Highlight Jersey Shore as a Smart Buy in 2025
- Top 5 Mistakes Entrepreneurs Make When Applying for SBA Loans
- Michigan Computer Supplies Expands Reach into Livingston County with New Brighton Service Offerings
- $18 Price Target Issued in New Research Report After $34 Million Revenue Forecast from Acquisition; $101.5 Million Net Revenue in 2025; NAS DAQ: IQST
- West Dentistry Welcomes New Oral Surgeon to Enhance Patient Care
- Delta Industrial Provides Custom Flatwork for Factory Floors
- American Plastic Solutions Launches FAQ to Provide Tailored Plastic Fabrication Solutions
- AdviCoach of Southeast Michigan Helps Business Owners at Every Stage
- The AML Shop Launches New Financial Investigations Unit, Appoints Director to Lead the Initiative
- Raidium révolutionne le diagnostic de la Sclérose en Plaques en partenariat avec l'Hôpital Fondation Adolphe de Rothschild
- New Podcast "Spreading the Good BUZZ" Hosted by Josh and Heidi Case Launches July 7th with Explosive Global Reach and a Mission to Transform Lives
- The Herbal Care, Led by Markel Bababekov, Becomes a Top Dispensary in NYC's Upper East Side
- Digital Watchdog Launches New myDW Cloud Services
- Stan Fitzgerald Appointed Acting Press Secretary for Veterans for America First VFAF Georgia State Chapter
- Atlas Home Improvement Launches Annual Helmet for Heroes Giveaway on July 4, 2025
- Drone Light Shows Emerge as the New Standard in Live Event Entertainment
- Lore Link is Here to Help Organize Your Game
- Chappaqua's Annual Townwide Summer Sale – Unbeatable Savings at Your Favorite Local Boutiques!
- Skyline Partners with ZenSpace to Offer Private Meeting Pods for Trade Show Exhibitors