Trending...
- Roofman USA Expands Roofing Services Across Michigan, Adding Key Locations - 173
- Green Office Partner Named #1 Best Place to Work in Chicago by Crain's for 2025 - 160
- "Leading From Day One: The Essential Guide for New Supervisors" Draws from 25+ Years of International Management Experience - 151
The latest results will be presented at THE BATTERY SHOW in Detroit, USA, September 13-15, 2022 and Battery Safety Summit, October 12-14, 2022
KOBE, Japan, Sept. 14, 2022 /PRNewswire/ -- Integral Geometry Science Inc. (https://www.ig-instrum.co.jp/), a Japanese deep tech imaging startup, releases an innovative inspection system, which will enable battery manufacturers to detect products having ignition risks with higher-precision. The system is applied with a theory of inverse problem, developed by Professor Kenjiro Kimura of Kobe University Japan, for the first time in applied mathematics history.
Storage batteries are used in many fields for the purpose of storing energy generated. Storage batteries are applied to aging tests before shipment, and only good batteries are distributed in the market. However, accidents such as ignition have occurred though batteries pass these safety tests. One of the causes of these accidents is that the electric current density inside the storage battery is spatially non-uniform, and the degree of this non-uniformity gradually increases as the battery is recharged and discharged. A sophisticated good/failure discrimination system is essentially required to eliminate theses batteries with non-uniform electric current density distribution.
More on Michimich.com
Our visualization system can visualize and evaluate the spatial distribution of electric current density inside batteries by using measurement data of spatial distribution of the magnetic field outside the ones, which is originated from internal electric current flows.
The key technology and theory of this visualization system is an analytical solution of the inverse problem, that is to derive the electric current density distribution inside a storage battery from the measured data of the spatial distribution of the magnetic field. We have firstly derived its analytical solution. When nondestructive-testing based on this theory, although electric current is applied during measurement, level of the electric current is very low compared to the practical level of intrinsic battery power, and has no effect, so storage batteries that are determined to be good in terms of the spatial uniformity of electric current density distribution can be shipped as is.
Many manufacturers of vehicle-mounted storage batteries have used our visualization system, and we have contributed to the analysis of many failure locations and good/fail decisions (Figure 1). As a result of visualization, self-discharge points are brightly indicated.
More on Michimich.com
Visualization of abnormalities about spatial distribution of electric current density caused by cycle degradation (Figure 2) and Li-NMR analysis by dismantling inspection have confirmed electrode degradation and metal precipitation at failure points (Figure 3).
When this next-generation pre-shipping quality control system based on electric current distribution visualization technology is introduced as a safety test, risks in the battery business are reduced and storage batteries with more safety assurance must be distributed. We will participate in an exhibition in the U.S. (THE BATTERY SHOW, dates : September 13-15, location : Suburban Collection Showplace, Novai, MI, booth number : #1250 / Battery Safety Summit, online, October 12-14, 2022).
SOURCE Integral Geometry Science Inc.
KOBE, Japan, Sept. 14, 2022 /PRNewswire/ -- Integral Geometry Science Inc. (https://www.ig-instrum.co.jp/), a Japanese deep tech imaging startup, releases an innovative inspection system, which will enable battery manufacturers to detect products having ignition risks with higher-precision. The system is applied with a theory of inverse problem, developed by Professor Kenjiro Kimura of Kobe University Japan, for the first time in applied mathematics history.
Storage batteries are used in many fields for the purpose of storing energy generated. Storage batteries are applied to aging tests before shipment, and only good batteries are distributed in the market. However, accidents such as ignition have occurred though batteries pass these safety tests. One of the causes of these accidents is that the electric current density inside the storage battery is spatially non-uniform, and the degree of this non-uniformity gradually increases as the battery is recharged and discharged. A sophisticated good/failure discrimination system is essentially required to eliminate theses batteries with non-uniform electric current density distribution.
More on Michimich.com
- New Leadership and Renovations Usher in Next Chapter for Sunrise Manor
- Who Will Win the 2025 WNBA Finals? OddsTrader Shares Live Betting Odds and Projections
- Geeks5g Creative Marketing: The Powerhouse Behind Business Growth
- Two new inductees selected to the Trenton Educational Foundation's Wall of Fame
- Agemin Unveils Breakthrough AI Model for Biometric Age Estimation, Setting New Standards in Online Child Safety
Our visualization system can visualize and evaluate the spatial distribution of electric current density inside batteries by using measurement data of spatial distribution of the magnetic field outside the ones, which is originated from internal electric current flows.
The key technology and theory of this visualization system is an analytical solution of the inverse problem, that is to derive the electric current density distribution inside a storage battery from the measured data of the spatial distribution of the magnetic field. We have firstly derived its analytical solution. When nondestructive-testing based on this theory, although electric current is applied during measurement, level of the electric current is very low compared to the practical level of intrinsic battery power, and has no effect, so storage batteries that are determined to be good in terms of the spatial uniformity of electric current density distribution can be shipped as is.
Many manufacturers of vehicle-mounted storage batteries have used our visualization system, and we have contributed to the analysis of many failure locations and good/fail decisions (Figure 1). As a result of visualization, self-discharge points are brightly indicated.
More on Michimich.com
- Strategic Partnerships with Defiant Space Corp and Emtel Energy USA Powerfully Enhance Solar Tech Leader with NASA Agreements: Ascent Solar $ASTI
- 120% Revenue Surge with Four Straight Profitable Quarters Signal a Breakout in the Multi-Billion Dollar Homebuilding Market: Innovative Designs $IVDN
- Leading Venture Capital Firms Recognize Wzzph Exchange's Technical Architecture and Security Framework as Industry Benchmark
- DivX Unveils Major DivX Software Update: Seamless Video Sharing and Customizable Playback Now Available
- Nespolo Mechanical Helps New Mexico Families Save Thousands on Heating Costs This Fall
Visualization of abnormalities about spatial distribution of electric current density caused by cycle degradation (Figure 2) and Li-NMR analysis by dismantling inspection have confirmed electrode degradation and metal precipitation at failure points (Figure 3).
- Future
When this next-generation pre-shipping quality control system based on electric current distribution visualization technology is introduced as a safety test, risks in the battery business are reduced and storage batteries with more safety assurance must be distributed. We will participate in an exhibition in the U.S. (THE BATTERY SHOW, dates : September 13-15, location : Suburban Collection Showplace, Novai, MI, booth number : #1250 / Battery Safety Summit, online, October 12-14, 2022).
- References
- Shogo Suzuki, Hideaki Okada, Kai Yabumoto, Seiju Matsuda, Yuki Mima, Noriaki Kimura, and Kenjiro Kimura, "Non-destructive visualization of short circuits in lithium-ion batteries by amagnetic field imaging system", Japanese Journal of Applied Physics, 60 056502(2021).
- Seiju Matsuda, Shogo Suzuki, Kai Yabumoto, Hideaki Okada, Yuki Mima, Noriaki Kimura, Kenjiro Kimura, "Real-time imaging of the electric conductivity distribution inside a rechargeable battery cell, Electrochemistry", Vol. 89, No. 5, 2021.
SOURCE Integral Geometry Science Inc.
Filed Under: Business
0 Comments
Latest on Michimich.com
- Comerica Incorporated Names Kristina Janssens Senior Executive Vice President and Chief Risk Officer
- ENTOUCH Completes $50 million Funding Round
- Teaming Agreement with Emtel Energy USA to Advance Thin-Film PV Energy Storage Capabilities; NASA agreements for Solar Space Tech; Ascent Solar $ASTI
- Nebuvex Acknowledges Platform "Too Secure" for Anonymous Traders; Institutional Investors Disagree
- From Tokyo to Berlin: FreeTo.Chat Unites Cultures with the World's First Confession VRX — EmojiStream™
- AZETHIO Launches Multi-Million Dollar User Protection Initiative Following Unprecedented Platform Growth
- Matecrypt Observes South American Cryptocurrency Adoption Surge Amid Economic Shifts
- Assent Uncovers Over 695 Unique PFAS Across Global Supply Chains as Regulations Increase
- Cryptocurrency Quarterly Trading Volume Surpasses $15 Trillion Record High as BrazilNex Acknowledges Industry 'Growing Pains' Amid Market Speculation
- AHRFD Initiates Legal Proceedings Against Anwalt.de for Publishing Defamatory and False Content
- New Analysis Reveals the Complex Forces Driving the 'Great Human Reshuffle'
- Elevate Unveils GroundComm X30 at 2025 International GSE Expo in Las Vegas
- NEW power supply release from Kepco Dynatronix - HSP Advanced
- St. Augustine Honors Hispanic Heritage Month
- Vesica Health Receives AUA Guideline Inclusion
- Steward's Plumbing Sponsors the 2025 Samson Challenge, Bringing Community, Fitness, and Fun Together in Albuquerque
- Spelman College wins 7th annual Moguls in the Making entrepreneurial pitch competition
- Price Right RV Announces Participation in the 36th Annual Fall Detroit RV & Camping Show
- 10xLaw.com Extends Employment Opportunity to Kim Kardashian
- DecisionPoint Technologies Accelerates Growth with Acquisition of Acuity Technologies